POSITION AS FUNCTION OF <u>TIME</u> (L-42)

This is a run-and-shoot lab in the sense that your grade will be generated *during* lab. It is also going to be an interesting lab. You will need to calculate all the parameters needed to determine where a bob on a spring is 3 seconds after the clock is started.

PROCEDURE--DATA

Part A: (the worksheet)

a.) During class, we came up with an expression that allowed you to determine *where* a bob was at any point in time. That relationship was:

 $y(t) = A \sin(\omega t + \phi)$.

You are going to determine all the parameters you need to be able to use that expression to determine where the bob will a time t = 3 seconds as it oscillate in the vertical.

b.) Pick a spring. You want to weight the spring with a bob that is large enough so the spring and bob oscillates *very slowly*. Record that mass.

c.) Determine your spring's spring constant. (You know how to do this—use what you know!) Showing the relationship used.

d.) Determine the spring's angular frequency. Showing the relationship used.

e.) We want the oscillation to span as large an amplitude as possible, so choose an amplitude for your spring and record it.

f.) I will tell each group where I want their bob to be when the clock starts. That means you will have to determine the appropriate phase shift on the spot. Do that calculation below. (I've provided a sine wave to the right for your convenience.)

BEFORE MAKING YOUR RUN, YOU NEED TO SHOW ME THE INFORMATION REQUESTED IN THE SECTIONS BELOW.

g.) With all of the information accumulated above, write out the "y(t) = " expression (the only unknown variable in the relationship should be time). Show this to me before you make your run.

h.) Evaluate the expression generated in *Part* g to determine the bob's *y*-coordinate as it exists at t = 3 seconds. Show me this information before your run.

i.) When you are ready, GET ME so you can make your run.